MATH 3060 Assignment 5 solution

Chan Ki Fung

November 23, 2021

1. We will define F by (For $x_n \in E$)

$$
F(\lim x_n) = \lim f(x_n)
$$

We need to check

- (a) $\lim f(x_n)$ exists if $\lim x_n$ exists.
- (b) If $\lim x_n = \lim x'_n$, then $\lim f(x_n) = \lim f(x'_n)$.
- (c) If $x = \lim x_n \in E$, then $\lim f(x_n) = f(x)$.
- (d) F is uniformly continuous.

To show (a), we need to check $f(x_n)$ is Cauchy. In fact, let $\epsilon > 0$, we can find $\delta > 0$ such that for any $x, x' \in E$,

$$
d_X(x, x') < \delta \implies d_Y(f(x), f(x')) < \epsilon.
$$

So it suffices to show that we can find an integer N such that for $n, m > N$

$$
d_X(x_n, x_m) < \delta,
$$

and this is true because (x_n) is Cauchy. For (b), note that $d_X(x_n, x'_n) \to 0$, so

$$
d_Y(\lim f(x_n), \lim f(x'_n)) = \lim d_Y(f(x_n), f(x'_n)) = 0
$$

because f is uniformly continuous.

- (c) follows from the definition of f being continuous.
- (d) Let ϵ , we can find $\delta > 0$ such that for $x, x' \in E$

$$
d_X(x, x') < 3\delta \implies d_Y(f(x), f(x')) < \epsilon.
$$

Now let $x, x' \in \overline{E}$, and choose $\{x_n\}$, $\{x'_n\} \subset E$ with $x = \lim x_n$, $y = \lim x'_n$. Then for n sufficiently large, we have

$$
d_X(x_n,x) < \delta, d_X(x'_n,x') < \delta.
$$

We must have $d_X(x_n, x'_n) < 3\delta$, and hence

$$
d_Y(F(x), F(x')) = d_Y(\lim f(x_n), \lim f(x'_n)) = \lim d_Y(f(x_n), f(x'_n)) < \epsilon.
$$

2. We write $x-3x \sin x + x^4 = \Phi = Id(x)+\Psi(x)$, where $\Psi(x) = -3x \sin x + x^4$. For $|x|, |x'| < r < 1$, we have, by mean value theorem,

$$
|\Psi(x)-\Psi(x')|=|(-3\sin\xi-3\xi\cos\xi+4\xi^3)||x-x'|\leq 10r|x-x'|.
$$

We will conclude by perturbation of identity that we can choose r so that 0.001 ∈ Im(Φ). To do this, we need $10r < 1$, and $(1-10r)r > 0.001$. This can be done, for example taking $r = 0.09$.

3. We write $\Phi = \text{Id} + \Psi$, where $\Psi(x, y) = (y^4, -x^2)$. For $p = (x, y), p' = (x', y') \in B_0(r)$, we have

$$
||\Psi(p) - \Psi(p')||^2 = (y^4 - y'^4)^2 + (x^2 - x'^2)^2
$$

\n
$$
\leq (4\xi_y^3)^2 (y - y')^2 + (2\xi_x)^2 (x - x')^2
$$

\n
$$
\leq 16r^6 ||p - p'||^2 + 4r^4 |p - p'|^2
$$

If we assume $r < 1$, then we have

$$
||\Psi(p) - \Psi(p')|| \le \sqrt{20r^2} ||p - p'||^2 \le 5r||p - p'||.
$$

We then apply the Perturbation of identity, so we need to choose r so that $5r < 1$ and $(1 - 5r)r > 0.01$. We can take, for example $r = 0.1$.

4. Note that $(I - A)^t = I - A^t$, so it suffices to show $I - A^t$ is invertible. The idea is to show that A^t is a contraction. If this is true, then $I - A^t$ must be invertible. This is because if $x \neq 0$ and $(I - A^t)x = 0$, then $|x| > |A^t x| = |-x| = |x|$, which is a contradiction.

However, A^t may not be a contraction for the standard metric, but it is a contraction for d_{sup} and d_1 . We will do the case for d_1 .

Take $\gamma = \max_i \sum_j |a_{ij}| < 1$. We need to show that $|A^t x|_1 \leq \gamma |x|_1$. But

$$
|Atx|_1 = \sum_{j} \sum_{i} |a_{ij}x_i|
$$

\n
$$
\leq \sum_{i} \left(|x_i| \sum_{j} |a_{ij}| \right)
$$

\n
$$
\leq \gamma \sum_{i} |x_i|
$$

\n
$$
= \gamma |x|_1
$$